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Abstract. Fault detection and isolation are critical tasks to ensurefault is diagnosed by ensuring particles enter the true fault mode and
correct operation of systems. When we consider stochastic hybrithen the observation function would keep increasing the weight of
systems, diagnosis algorithms need to track both the discrete modkese particles. If there are a large number of fault modes then this
and the continuous state of the system in the presence of noise. Deequires a lot of computational resources since particles need to be
terministic techniques like Livingstone cannot deal with the stochasput in all fault modes to make sure no fault is missed.

ticity in the system and models. Conversely Bayesian belief up- On the other hand consistency-based approaches like Livingstone
date techniques such as particle filters may require many computft2, 6] hand use structural and behavioral models (as opposed to tran-
tional resources to get a good approximation of the true belief statesition models) to diagnose the faults. The system is modeled in ab-
In this paper we propose a fault detection and isolation architecstracted form and the observations are also converted to this form
ture for stochastic hybrid systems that combines look-ahead Rad”monitors” for Livingstone). When the predictions from the model
Blackwellized Particle Filters (RBPF) with the Livingstone 3 (L3) are not consistent with the observations, then the discrepancies are
diagnosis engine. In this approach RBPF is used to track the nominaised to identify conflicts which are then used to identify possible
behavior, a noveh-step prediction scheme is used for fault detectionfault candidates. These candidates can be tracked by comparing the
and L3 is used to generate a set of candidates that are consistent withedictions under these fault conditions against the observations. In
the discrepant observations which then continue to be tracked by this approach, rather than blindly guessing the faults, the constraints
RBPF scheme. in the model are used to limit the candidates to be considered. How-
ever these approaches tend to be deterministic in nature (in some
cases prior probabilities are used) and hence cannot deal with uncer-
tain transitions and noise in the sensors and system.

NASA’s vision for the twenty first century includes robotic explo- In this paper, we comblne these two approqches 'n, an effort
ration of deep space and human-robotic exploration of Mars and th[=9_ . re_duce the compu_tatlonal C_Omp"??"ty assoc_lated with proba-
moon. Safety is a major priority for all these efforts, for manned asb”'s“C approach_e_s while extending lemg_stone-llke approaches to
well as unmanned missions. One key component for autonomous Oigl_andle stochasticity. Our approach combines the look-ahead Rao-

eration of such systems while ensuring safety is fault detection an&laCkV\'eIIlzed P_art|cle _Fllter (_RBPF)_ [2, 5] and L'V'”QStF’”e 3 (_LS)
isolation. For safety-critical systems, fast and efficient fault detectiorpYSteMs to_provnde a_dlagn05|s architecture for St_OChaSt'C hybrid sys-
and isolation techniques are necessary in order to maintain a hi ms. Sectiork describes the RBPF and L3 algorithms and also de-

degree of availability, reliability, and operational safety [10]. TheseSCribes the unified modeling framework used by both diagnostic sys-
systems tend to be hybrid in nature (a mix of discrete and continuou€™MS- 1N Sectiors we present the combined architecture and explain
dynamics), hence both the discrete mode and continuous state of tﬁl&e different components of this architecture: the. nominal observer,
system need to be tracked. In addition the systems and any models%’le fault detector, the fault observer and the candidate generator.
the system are stochastic due to operation in uncertain environments

and the presence of sensor and process noise. As a result diagnogis Preliminaries

algorithms for such systems also need to be stochastic in nature.

Bayesian belief update approaches to stochastic hybrid system d?—'l The Look-Ahead Rao-Blackwellized Particle

agnosis try to maintain an approximation of the true belief state either Filter (RBPF)

by sampling [5, 3] or by maintaining limited trajectories [4]. Inorder The |ook-ahead Rao-Blackwellized particle filter [2] is detailed in

to deal with the continuous dynamics, the problem is broken up intgy|gorithm 1. It differs from the standard particle filter in two impor-

a discrete mode estimation coupled with continuous state estimatiogant respects. First, it maintains sufficient statistics (in the form of

Typlcally Kalman filters are used to track continuous state and th%aussian means and Covariances) for the continuous part of the Sys-

estimated state is used as the observation function to update weightsm state. Thus each particle (sample) can be thought of as consist-

of particles or probabilities of trajectories. In these approaches théhg of a sampled discrete mode plus a Kalman filter that represents a

T 0SS Group Inc.. NASA Ames Research Center, Moffett Field, CA, USA distribution over the continL_Jous value the system could have in that
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1 Introduction




P(Z, \z,@l) (the Monte Carlo step in a standard particle filter), look-
ahead allows us to incorporate the new observation to compute the
posterior distribution P(Zt|zt<i_)1, y:) over states the sample could
end up in, and sample directly from that.

The look-ahead RBPF algorithm operates as follows. Assumin
that we useN samples, first the discrete mod§) for each of the
N is sampled from the given prior distributiot, over the modes
(Step 1 in Algorithm 1). The mean!’ and covarianc&|” for the . . . o o
initial continuous state for each particle is also assumed to be giver]. "€ L3 diagnosis architecture ([9]) is illustrated in Figure 1. It con-

At each time step three computations are performed which form th&iSts of three main components. Téestem modedtores the model
core of look-ahead RBPF. First, a look-ahead is performed for eacff the system and is responsible for tracking the modes of operation
sample. All successor modes for the sample are enumerated and tAkthe different components and determining the constraints that are
continuous state in each of these modes at the next time step is co¥@lid at any point in time. Theonstraint systenserves the role of
puted using a Kalman filter. The observation is then used to comput@cking the overall system behavior using constraint programming
the posterior probability@(i,m) of the sample transitioning to techniques. It receives c_onstralnts from the System Model indicative
the successor mode. The weight of the particle is re-calculated as tﬁ)é the current conflg_uratlon O_f the system and propaga_tes these con-
sum of these posterior probabilities. Secondly (Step 7), the particle§tra'm$ to try_ to assign consistent values_ to varlabl_es in the system.
are resampled as in the regular particle filter algorithm based on the hen inconsistencies are seen (observations are dlffgrent from prop-
weights. Thirdly (Steps 9 and 10), a new mode for each new particl@gatefd values for corresppndmg components),cttmjldate man-

is sampled from the posterior distribution computed in Step 5, and9¢' 'S requn5|blg for using the Conﬂ'?ts generated as a result of
the mean and covariance are set to those computed for that mode H?ase inconsistencies t_o generat_e candldate_s that _resolv_e all the con-
the Kalman filter in Step 4. Note that while look-ahead RBPF is lim- cts and that can possibly explain all of the inconsistencies.

ited to linear-Gaussian models by the use of a Kalman filter in Step Al90rithm 2 details the L3 approach. Each candideltés repre-

4, there is no reason why the Gaussian particle filter (GPF) [5] coul(?_entEd as a triplef{’,(z, s¢). ) where F" is th_e set of fault transi-

not be used, allowing non-linear models to be tracked using the samfPns ((fl,’ t,l)’ - (f5:25)) that are hyppthe3|zed to have occurred
algorithm. However, the use of an unscented Kalman filter [11] in(with their time of occurrence} is the discrete mode of the system

the GPF algorithm complicates the discussion of our fault detectio"d5t IS the state of the system at time t (Current time) under the fault
algorithm in Section 3.2 below conditions andv; is the explanation graph tracing back from values

of variables at time to values of variables at time— LT whereL is
some truncation limit applied to limit how far back we are willing to

Figure 1. Livingstone 3 Diagnostic Architecture

g2.2 Livingstone 3 (L3)

go in order to generate candidatesincludes all variables that have

1: Initialization: for N particlesp’,i = 1,--- , N, sample discrete  memory i.e., variables whose values at timg v; depend on their
modes,z(()“, from the priorP(Z,) and setug” and Zg” to the| values attime — 1, v;_1. These may include continuous state vari-
prior mean and covariance in sta{é). t=1. ablesz if the quantitative and continuous constraints are included

2: forall p = (Zt(i—)h Nii)p ggl) do in th(_a Liviqgstone 3 models. Ipitiglly we only hgve the empty/null

3. for each possible successor modec Succ(zgi)l) do _candldate in our can_dn_cjate ﬁtlndlcatlng our bellef_a_b_out no fault

2 Perform a Kalman update using parameters from made in the system. .'I.'he initial discrete modg and the |n|t|al.state;o .

are used as initial mode and state for the empty candidate. At this
(im) aim) A(im) a(im) point the explanation graph for the empty candidate has only the
(yt\tfl’ S B BT variables from the current time step and no edges. At each time step
- KF(MQp EEQu yi,0(m)) t, we compute the new system discrete medand instantiate the
constraintsy(z¢) into a constraint stor€) for this mode. Note that
5: Compute posterior probability of mode as the mode and constraints are actually composed from the modes and
constraints for each component rather then pre-enumeration for all
Post(i,m) — P(m | 27, ) system modes. The state is computed froms,_, (incorporating
_ 0 Gm) alim) any transition conditions imposed by transition frem; to z:). We
= P(m | 2N (yi; Yije—1> St|t—17yt) add edges;_; — s: andz;—1 — 2z in the explanation graph. In ad-
_ dition if z,—1 to z; was a transition based on some decision function

6:  Compute the weight of particle"*): over internal variables (autonomous transition) we add edges from all

) — s¢—1 involved in the decision function te;. Finally we remove alll

Wy~ Z Post(i,m) variables at tim¢ — LT — 1 (includings;— . r—1 andz;— r—1) from
mesuce(z{", the explanation graph. The sensed input values- U are added as
constraintg;(u:). The resulting set of constraints (constraint stoe)

7: ResampleV new samples'® where:P(p® = p®*)) oc w®. are propagated to infer values for other variables including the out-

8: for all p” do put variablesgy,. The explanation graph is also updated based on the

9:  Sample a new mode, ~ P(Z, | zt@l, Yt) propagation of variable values. These are compared against the ob-

10: Setzt(i) —m, Hiz‘) - Hiam) andzi“ - Egi’m). ser\{ationsm a_md any discrepa_ncies are used_ to identify cor_lflicts by
tracing back in the explanantion graph starting from the discrepant

Algorithm 1: The look-ahead RBPF algorithm y:. The conflicts are then used to generate fafilts. .., F;. Can-

didatec’ is replaced byi,...,c} in candidate se€’ wherec; =
(Fy.(zt, 5¢), B —1).



1 C= CO;COZ_(¢’ (20, 20), ¢) Figure 2. Combined Diagnostic Architecture

2: for each time stepdo

3 forall ¢! € C'do

4: zt = Next(zi—1);st = Next(s¢—1)

5: By =Ei1U(zi1 — 2,801 = s1) \ Erokxr1 3 Combined Architecture

6: Q = q(zt) U q(u)

;: il;ropig:t?h(ghUpdatEt Ou_r diagnosis architectur_e illustrated in Figure 2 consists of fpur

o leéolaté faultsfs £ main components, a nominal observer, a fault detector, a candidate
10 Crew = c1(f} ’Z't’ 'S’t %t) e (fi 250, ) generator and a fault observer. The nominal observer tracks the evo-
11: C’H:HC g LTC PE e B S o Iutlon. of system behgwor till a fault is detected at WhIC.h point the

) new candidate generator is used to generate a set of candidates that are
Algorithm 2: The L3 algorithm then tracked by the fault observer.
Before presenting our architecture we list some of the assumptions

2.3 Modeling Paradigm and Assumptions that we need:

We assume that the_stochastic hybrid system is modeled as a netwqrk The modes of the components can be separated into a set of nom-
of hybrid automata_ln a component connection framework. In other ;151 modes and a set of fault modes. This also implies that the
words, the system is modeled as a set of components and connec-yansitions may be divided into a set of nominal transitions (tran-
tions between them. The connections that typically connect variables jtiong into nominal modes) and faulty transitions (transitions into
across two components_, constrain the two _varlables to be equal. If ¢t modes). In general, this assumption may be relaxed as long as
cau_sallty can be established the_n one ve}rlable serves as an output e make a separation between the modes we want track with the
variable and. other serves as an |qput variable. The behavior of any particle filter and the modes that we want to track using the Liv-
component is modeled as a hybrid automaton wh_ere the states of ingstone framework. For example, the separation may be based on
the automaton represent dlsgrete modes of operation 01_‘ _the COMPO- the probability associated with the transitions.
nent. Faults are modeleq as instantaneous aprupt transitions to faylt £5its can be detected withid time steps of occurrence and this
modes wh(_ere the behavior of th_e component is known beforéhand K is known beforehand.
The behavior of the component in each mode is modeled as differes: \ytiple faults do not occur witti time steps of each other.
tial algebraic equations (for the RBPF) and as constraints from other
constraint systems like Boolean and Enumeration domains (for L3).
The system mode is computed as the composition of the individ-
ual component modes(C*), i.e.,z = 2(C*) U... U 2(C™) where
Ct, ..., C™ are the components in the system model. The behavio
of the system in any mode’ can be expressed as a union of the
set of constraints enforced by each component plus the set of globdh€ nominal observer is used to track the evolution of the nomi-
constraints (constraints that do not depend on the mode of any conf@l behavior of the system. The discrete modes of the system are
ponent), i.e. M (z7) = M(2/(C*))U...U M(z7(C™)) U MC. tracked by sampling from a posterior probability whereas the distri-
The transitions between the discrete modes include a transitioRution over the continuous state is estimated by an unscented Kalman
conditions and a probability (constant) value. The transition condifilter. Obviously there is uncertainty in the state estimates which is
tion determines when the component may switch modes of behawaptured as a distribution. However there is also uncertainty about
ior. The probability value then stochastically determines the chance€ discrete modes. In the case of commanded transitions (where the
of the transition actually being fired. Transitions can be of threecOmmands are sensed) the actual execution of the command may not
types Commanded, Autonomous, and Faulty. Commanded transie certain and there might a small chance that the command is not
tions are changes in modes as a result of external commands whifecuted. Also since autonomous transition conditions are based on
autonomous transitions are changes in component modes as a redtig continuous state, the uncertainty about the estimated continuous
of internal conditions. Commanded transitions are modeled with thétate leads to an uncertainty in evaluation of the autonomous transi-
sensing of the issuance of an external command event as the trafon conditions.
sition condition and a probability indicating the chance of the com- The nominal observer uses the look-ahead RBPF algorithm (Al-
mand actually being executed. Autonomous transitions are modele@Prithm 1) to track the discrete modes and continuous state of the
by a transition conditions that is a boolean valued function of inter-System as a set of particles" ,...p""), where N is the number
nal variables and a probability that indicates the chances of the trarf particles used. However instead of pre-computing the state space
sition being fired when the function evaluates to TRUE. Howevereduations of the system in each system mode, we use alazy approach.
autonomous transitions may involve additional uncertainties due tdVe maintain a cache of visited modes and the state space equations in
the fact in some cases we can only estimate distributions for valuggiese modez" — f(z*)} wheref is a possibly non-linear function
of the variables involved in the decision function. Faulty transitions'€Presenting the state space equations. Initially this cache is empty.
(transitions to fault modes) are modeled with unobserved events ad/hen a particle changes its discrete mode fegrto =, during the
transition conditions (we want to determine the occurrence of exf€-sampling step (including the initial sampling step);if# z:11

actly these events) with an associated probability that indicates th&e 0ok in the cache fog. .. If it is found then the corresponding
prior probability of that fault. model f(z:+1) is used for the unscented Kalman filter update. If it is

not found then we instantiate the constraints in the systéfa, 1)

3 Unknown modes may be used to represent faults for which the behavior ofequation 1) and then symbolically deriy&z:+1) from M (z¢41)
the component is not known before hand. [8] and add it to the cache.

;.1 Nominal Observer




3.2 Fault Detector

Since we are not tracking the fault modes we need a fault detector Figure 3. Filter fault detection and adaptive monitoring window.
to indicate that a fault has occurred in the system. In our case, a
fault in the system is detected only if the fault detectors in all the

particles indicate the presence of the fault. When the fault detector i) ,qes the process noise ovesteps but is not minimized. Its value
asingle particle raises a flag tk_\is may be because_ of an actua_ll fault ja generally large. Since we will be comparing thetep prediction
the system or because the trajectory that the particle is tracking doggih the Kalman filter, we will work in the process space rather than

not matich the true trajectory of the system. As a result we do nofne gpservation space because it has more dimensions, so our esti-
startisolating the fault until all particles indicate a discrepancy in they ates of the similarity of the two should be more accurate.

tracking. We first describe the fault detector mechanism that is run \we assess thikelihood of the filter estimatas opposed to the
locally in each particle. Then we describe what happens when a faullalinood of the observation:

is detected locally (by some particles) but that globally the fault has
not been detected (there exist some particles that are tracking ok). (i |y, i) = p(ye, 1 )p(2+)

Since each particle is using a Kalman filter to track the system LrIe p(ye, Z)
behavior, the fault det_ection has to take this _into cqnsid_eratiqn. A ~  plye | &7, 80)p(EY | &0)p(Ee)
number of fault detection schemes that work in conjunction with a
Kalman filter tracking approach have been proposed (see for exanif this probability is high then we expect the system to be nominal.
ple [1, 7]). However, these fault detection schemes use only a singlé/e approximate it by computing a likelihood  of the estimate in
step prediction for fault detection: the likelihood of the estimate isthe form of the nominal ) indicator L(N | v, %) = L(y: |
assessed through the likelihood of the observagiogiven the one- &) L(Zy | &:)Py. Thea priori n-step likelihoodL(y. | z7') is
step predictionj; = N (¢, ®1)* (this is the Kalman filter from  based on the distance between the observati@nd then-step ob-
stept — 1 with the Kalman gain equation applied, but before con- servation predictiory;'. This is a natural extension to the one-step
ditioning on the observation). This can run into problems in certaina priori likelihood. Due to the potentially large variantg, it may
situations. We know that the mean 9f = N (i, d,) is always  not be sufficient for quick detection. Then we propose to examine
betweeny; and ;. We distinguish three different cases (assumingthe Kullback-Leibler & L) divergence betweef; andzy, which
y < i, < indicating significant difference and indicatingclose ~ measures how different the two distributions akeL(z}, ) can
to): (1) ye < ¢ < 0, (il) ye < 0y < B¢, (i) y < &y < ¥¢. The  be understood as the average number of bits that are wasted by en-
one-step prediction approach will not work in cdsg) and may not  coding events from the predicted distribution (ovesteps) with a
work in case(ii) because the difference between the prediction andcode based on the estimated distribution. Therefore, the less bits are
the measurement may not be large enough given the process noiseasted, the more it is likely the system behavior is nominal. We thus
Moreover, in a model with significant noise, the Kalman filter will noteL(z}|@:) = K L(C—&}, i), whereC' = 1/(27"=/2|57|/2).
tend to closely track the observation at every step due to the Kalmafhe fault ) indicator follows: L(F | v, %) £ (C — L(y: |
update, and will therefore reduce the chance of future detection ofy')) K'L(ZY,&1). PN = 3, coucey (s0) P (M2t), sucen(2:) de-
the fault. notes thenominal successor® the current mode;, and Pr =

One solution is to collect statistics over the difference betwgen 1 — Py.
andy over time, and to detect model bias by looking at whether that We build a decision functiong based on these indicators
difference is consistently positive or negative (i.e. if it is random, gn (y:, Z7) = log(L(y: | Z7')) + L(Z7|&¢) + log(Pn) assesses
then it may be considered as noise, if it is always positive or alway$or the nominal behavior angr(y:,z¢) = log(C — L(y: |
negative, that is a bad model). The drawback of this approach is that;")) + KL(%;|Z:) + log(Pr) for any faulty behavior. The sign
it is usually not clear when to stop collecting data to take a decisionof g(y:, Z¥') = gn (v, 1) — gr (y¢, Z1') is studied. This value is re-

In [7] is presented an approach based on a discrete wavelet trankned by the filter, besides the current estimate and serves as a fault
form in combination with a statistical decision function. Unfortu- indicator (when< 0). An extension to this filter automatically adapts
nately it requires the precise setting of several parameters and thresh-by considering the decision functignvariations, s increases
olds either by hand or (fault) simulations, that precludes its use wittwhen a fault decision becomes more likely, and decreases otherwise.
complex hybrid systems with exponential (fault) mode combinationsResults are presented on figure 3. The three graphs show:

We overcome these problems by extending the prediction-to ) ) )
steps besides the standard estimate computation, and use an approaliddle graph The actual observations that are being tracked, the
based on decision theory. Two derivable decision functions are built, 7-Step predictor of state, and the Kalman filter estimate of state
to assess for the nominal and faulty behaviors respectively whose_for & system in which a fault occurs. , )
equality at each time step defines a sharp non-faulty/faulty decision TP Graph The number of steps for the-step predictor growing

threshold. Furthermore, their variations are studied to adapt the win-_28S the likelihood of detecting a fault grows. _
dow sizen. Bottom Graph The value at each step of the decision function. The

We write j* = N (77", é?) for the n-step prediction of the ob- fault is detectec_i approximateB0 st_eps after it actually occurs
servation as before, angf' = N (a7, %) for then-step prediction (when the function becomes negative).
of the process. The-step predicted staté;’ is calculated by tak-
ing Z:—, and then predicting the state forward without the Kalman
updates, up to current tinteSimilarly, then-steps covariancg? in-

When the fault detector running inside a particle detects a fault,
the particle sets a timer fdk'T" (T is the observation sampling rate)
and goes to sleep. If all other particles detect a fault before this timer

4 We use a non-standard notation for the Kalman filters in this section be[uns out then the particle wakes up and starts the candidate genera-

cause we want to be very clear about when we are referring to the compled®r algorithm. If the timer expires and there are still some particles
distribution @, etc.) and when we are referring to the mearefc.). that have not indicated a fault then the particle wakes up and sets its




weight to0 and gets re-sampled. During the time that particles areusing only the nominal transition model to sample the discrete mode
asleep we continue tracking with fewer numbers of particles (totathanges. While the fault observer is running, the fault detector is sup-
particles less the particles that are asleep). pressed and no new faults are detected (Assumption 3). After time
trq We switch to the nominal observer scheme (including the fault
detector) since the fault is assumed to have occurred befgr@he
candidate generator and fault observer algorithm is presented as Al-
The candidate generator is started for each particle when the faufforithm 3.
detectors of all particles have raised a flag. Let the time when the last

particle indicates a fault beyq. Let the time of fault detection for | 1. for all p do

any particlep'”) bet ;). For each particle”, we run the L3 single | 2. Run L3 to generate single fault candidates:
fault candidate generation algorithm (from assumption 3) starting a

3.3 Candidate Generator

—

time t(;, and backtracking to time;s — KT (from assumption 2). Z =00, 2)
Note that ift ;) <tyq — KT, then the particle is re-sampled as a new
particle. ((F1s12), (fa2), -+ (fis 1)) = DoL3(t(, Z)

For each particle”, we use the Livingstone 3 diagnosis engine in
the following fashion. First we run L3 in a purely simulation mode|
to get predictions for all observed variables between tipeand
current timet. Then we compare these predictions against the obser- (; . . i
vations at the corresponding times to igentify a set gf discrepancies.pg Mz = 2, + fio i = p(ai,), S = S(aiy ), w = w' < P(f;)
These discrepancies are of the fofto., t1), . . ., (vk, lx)) wherevy,
is a variable andy, is the time at whichy, was discrepant. During
the simulation we build up the explanation graph frgm to timet. i i i
The explanation graph traces the justifications for assigning values toAlgorithm 3: Candidate Generator and Fault Observer Algorithm
variables (for example propagating a constraint) all the way back to ) ] ) o ) )
the reason for adding a constraint. Some constraints are added based N'® complete diagnostic algorithm is illustrated in Algorithm 4.
on the assumption that components are nominal and we need to ﬁa'_he RBPF is used in .nomlnal observer mode to track the evolytllon
ure out which of these assumptions are necessary for derivation & the nominal behavior of the system. The fault detector decision
discrepancies. For each discrepatiay, I;, ), We trace back in the ex- functlongt is used to determlr_1e if there is any dlscrepgncy between
planation graph to identify a subset of assumptions that contributed t§'¢ Predictions and observations. If there is such a discrepancy for
the discrepancy called a confligt. We now generate one single fault 81 particlep'”’ then the particle goes to sleep f&fI" time steps at
candidat(f;, ¢,) that resolves all of the identified conflicts but only the end of which it kils itself by setting its weight to(w; 7., , =
fort; < t;. We "install” this candidate and simulate as before to getV)- Once all particles have gone to sleep implying that none of the
predictions for all time steps betweénpand current time (all pre- nominal trajectories are consistent with the observations we run the
dictions beforet; should be the same as nominal). The comparisorcandidate generator and fault observer (Algorithm 3) to isolate and
against observations yields a new set of discrepant observations afi@ck the faults from time — K'7" to timet at which point we switch
conflicts (which in this case may include fault assumptions) whichPack to the nominal observer.
are then added to the conflict set. If there are no discrepant obserya -
tions then this fault candidate is added to the possible fault candidate’ for each time stepdo L ()
set. Another single fault candidate is generated and the process e Run RBPF.EO est|ma.t(=zt,.a;t, :z:t).for each particle
peated until we cannot generate anymore single faults (alternately: Computegél as detailed in Section 3.2
we may restrict ourselves to a fixed number of candidates). 4 if g < Othen

3: for each(f;,t;) do
4: Create a new patrticle:

5: Sleep till timet;
6: Run the RBPF algorithm from time t-KT to t

5: Put particlep® to sleep till timet + KT + 1

6: Kill the particle after timet + KT + 1: wifﬁKT“ =0
3.4 Fault Observer 7. if all particles are aslegpen
After the L3 candidate generator has isolated faults indicating both 8: Run candidate generator and fault observer

the fault transition and the time of transition, we need to run

fault observer to track the behavior of the system under these fault

conditions. We use the RBPF to do this job also. Let us assume

that for each particle(”, L3 has isolated a set of fault candidates .

((f1,t1), (f2,t2), - .., (fi. ;). We replace® with j new particles 4 Conclusions and Future Work

(..., p}"). Each new particlp " sets a timer ta; indicating e have presented an architecture for monitoring and diagnosis

the time when the particle starts particpating in the RBPF. The initiabf stochastic hybrid systems. Our approach combines the Rao-

continuous state for this new particlg, 23)) is set to the continu-  Bjackwellised particle filter for tracking discrete mode transitions

ous state of the original particle at time((us, , 3¢, )) .., g = s, and continuous state, anstep predictor scheme for fault detection

andX} = Eij. This follows since the new particle follows the same and the Livingstone 3 algorithm for fault isolation. This is work in

trajectory as the original particle until the time of faulj)}; Hence  progress and we do not yet have results from an integrated system.

there is no need to track the behavior of this particle before the faultHowever some of the pieces of the architecture have been tested with
We now restart the RBPF from timg; — KT" with these newly  promising results. We hope to have results from the complete system

created particles. As mentioned before each pargitlgets added in the final version of this paper.

to the RBPF scheme only when the time step rea¢he$he fault There are several avenues for improving this architecture. One ob-

observer runs in this fashion until timg,. Note that we are still  vious thing to do is determine empirically exactly hd& and n

Algorithm 4: The Combined algorithm



should be set in relation to one another (assuminig not being
adapted dynamically). Intuitively, we might expect them to be the
same, since they are both measuring how many steps it takes befdre!
a fault can be detected. However, there is a subtle differeficis: 1]
a property of the system as a whole, the number of steps it takes to
detect any fault. On the other hand,is a parameter of the algo-
rithm; we can varyn to trade-off between more accurate estimation[12]
of when a fault actually occurred and reliability of detection (a small

n means less time in which the fault could have happened, but may
miss faults that can’t be distinguishedqinsteps). Clearly: should

never be larger thaf’, but how close it should be may depend on the
consequences of not knowing the time of the fault reliably. In Section
3.2 we discussed the fact thatcan be adapted on-line to improve
performance for a particular fault. This allowsto be adapted to the
particular fault being trackedy(increases if the fault is very gradual

and hence harder to distinguish from nominal). Again, the choice of
when to increase or decreasenay be informed by how important it

is to determine the actual time of the fault.

We have only discussed linear models and standard Kalman filters
in this work. Since very few real-world systems are actually linear,
we plan to extend the work to non-linear systems. The Gaussian par-
ticle filter [5] already uses unscented Kalman filters (UKF) to apply
RBPF to non-linear systems, but the fault detector will need to be
modified to cope with non-linearity. The difficulty here is that the ap-
proximation that occurs in the UKF will be magnified by theteps
of the predictor so the variance of the resulting distribution may be
very large indeed, leading to increased problems in detecting faults
early and reliably.

Finally, Livingstone 3 is currently being expanded by adding ad-
ditional constraint systems, including the ability to use continuous
constraints. As these new capabilities become available, L3 should
be able to generate a richer set of candidate diagnoses, and hence the
performance of the system we have described here should be able to
be similarly improved.
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